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Goals 
• Perform functional testing of lead acid batteries to demonstrate potential 

improvements to battery charging algorithms 
 

Rationale 
• Improving charging algorithms can improve battery lifetime 

• Current charging algorithms are constant voltage and may only provide for 
temperature compensation (if at all) 

• Variable voltage algorithms that also incorporating state-of-charge 
compensation can improve battery charge operations 

• Improving battery state of knowledge (charge status) can extend battery usage 
beyond SLI (starting, lights, ignition) operations to enable silent watch 
operations  

 

Approach 
• Characterize lead acid battery performance as a function of temperature  
• Three test phases identified and are being executed 

• Characterize battery environmental performance 
 (OCV, resistance and capacity tests according to MIL-PRF-32143A) 
• Controlled alternator charging performance 
• Vehicle simulation tests 
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Alternator Operations 
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• Alternators provide current to provide battery charging 
and vehicle current demands 
 

• Voltage regulator accepts voltage feedback from battery 
circuit 
 

• Typical alternator circuits employ an adjustable rotor field 
current to provide desired output voltage (current) 
 

• Alternator may employ temperature feedback from 
battery 

• Different algorithms are employed if batteries are co-located with the 
alternator (i.e. in engine compartment) 

• Vehicle packaging may dictate other locations 
 

• In general, battery resistance decreases at higher 
temperatures 

• Reducing alternator output voltage at higher temperature reduces 
current output for battery recharging 

 

• The greater depth of discharge exercised for silent watch 
(engine off) operations increases the need for state-of-
charge and temperature compensation. 
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• Although many forms of equivalent circuit models  
 exist, the most common form is the Thevinin  
 equivalent circuit 

 

• Battery is characterized by an open circuit  
 voltage (OCV) source in series with an  

R-C pair and a line resistance, R0 
 

• A parallel charging resistance leg accounts for  
 parasitic losses during charging operations 

 

• Under steady-state operations (constant current), the battery direct current resistance 
(DCR) is characterized by the sum of resistances R1 and R0 
 

• OCV is a function of battery state-of-charge (SOC) 
 

• Resistance values are a function of battery SOC, temperature and current direction 
(charging vs discharging) 
 

• Cell voltage (Vcell) and hence feedback voltage to the voltage regulator is a function of 
battery OCV, battery DCR and current demand 

Battery Equivalent Circuit 
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• Open circuit voltage (OCV) is a function of battery 
 state-of-charge (SOC) 

 
• Our suggested OCV correlation form superposes two 
 exponential functions and a linear function 

 
 
 
 

• This functional form captures near-full and near-empty 
 nonlinearity, provides great flexibility and avoids inflection 
 points associated with polynomial forms 
 
• Two coefficients are found through boundary conditions  
 (full & empty OCV) and negative slope imposes limits on a third 

 
• Correlations exhibit very satisfactory agreement with 
 manufacturer data 

Open Circuit Voltage 
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Typical OCV as a function 
of Depth of Discharge for a 

VRLA AGM Battery 

Coefficient Value 
A 0.086 
B 0.969 
α 115.664 
β 12.203 
C -1.145 
D 11.645 

 
OCV Coefficients for 
VRLA AGM Battery 
Manufacturer Data 
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• SOC can be determined through Coulomb counting: 
 
 

• However, battery capacity is a function of effective 
 current rate and cell temperature 

 
 

• Historically, cell capacity current compensation can 
 be estimated with Peukert’s Law 

 
 

• However, Peukert’s Law does not account for 
 temperature effects AND can significantly overestimate 
 capacity at high currents 

 

• A literature survey showed the following general correlation 
 can better estimate performance: 

 
 

• However, a modified correlation shows better agreement 
 with manufacturer data 
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Battery Current 
Compensation Correlations 

 General 
Correlation 

Modified 
Correlation 

α 1.073 1.001 
β 0.808 1.532 
γ N/A -0.122 

 Current Compensation 
Correlation Coefficients 
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• Temperature compensation looks to correct battery capacity 
 

• A simple product solution is desired to couple the current and temperature compensation into 
a single form 
 

• For temperature compensation, we propose a 
 power law of the form: 

 
 where θ represents the dimensionless battery 
 temperature 

 
 

• Limits in the dimensionless temperature have been  
 chosen around the rated (nameplate) temperature, T0,  
 and the approximate electrolyte freezing temperature, Tf 

 
 

• General form of the battery capacity compensation correlation: 
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Advanced 
Battery 

Tester Unit 
Environmental 
Test Chamber 

Battery 
Tester 

Software 

Environmental Testing 
(Key Apparatus) 

• Primary environmental testing utilizes 
the SAIC-developed Advanced Battery 
Tester coupled to an environmental 
chamber 
 

• Environmental chamber allows for 
controlled ambient conditions / battery 
tempering 
 

• Battery tester allows for 
programmable time-variant test load 
profiles under a variety of conditions 
 

• Custom software allows for real-time 
data display, processing and storage 
 

• Instrumentation includes current, 
voltage and temperatures 
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Discharge ends when 
voltage reaches 10.5V 

Charge at 25A 
Current tapers down as battery reaches full 
capacity (defined as 14.25V) 

Taper charge state runs for 
a total of 10 hours.  Voltage 
returns to OCV 

Environmental Testing 
(Reserve Capacity Test) 

• Environmental testing has used the standard reserve capacity test (MIL-PRF-32143A) 
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Discharge sequences

Charge sequences

Discharge sequences

Charge sequences

• Batteries are initially tempered to 
median ambient temperature (27°) 

• Reserve capacity and recharge 
according to MIL-PRF-32143A 

 

• Battery test article is tempered to 
target temperature 

• Reserve capacity test at 
temperature 

• Recharge at temperature 
• 2nd reserve capacity test at 

temperature 
 

• Return to median temperature (27°C) 
• Recharge at median temperature 
• Post-temperature reserve 

capacity test 
• Recharge 

Environmental Testing 
(General Procedure) 

Environmental Test Data Exemplar 
(60°C Test Sequence) 
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• Battery DCR can be calculated from 
knowledge of the instantaneous OCV through: 
 
 
 

• OCV is determined through SOC knowledge 
 

• A correlation mapping DCR as a function of 
SOC and temperature was sought of the form: 
 
 

• Each of the coefficients are assumed linear 
functions of dimensionless temperature 
 
 

 where 
 
 

• Good correlation to data implies linear 
temperature variation may be adequate 
assumption 

 

Coefficient m B 
A -1.113 1.753 
B -0.308 0.980 
α 0.129 0.602 
β 33.369 0.797 
C -0.616 0.982 
D 1.059 -1.655 
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• Battery DCR can be calculated from 
knowledge of the instantaneous OCV through: 
 
 
 

• OCV is determined through SOC knowledge 
 

• A correlation mapping DCR as a function of 
SOC and temperature was sought of the form: 
 
 

• Each of the coefficients are assumed linear 
functions of dimensionless temperature 
 
 

 where 
 
 

• Poorer correlation to data than charging 
illustrates non-linear temperature behavior 

 

Coefficient m b 
A 5.698E-03 4.647E-03 
B 1.455E-02 2.159E-03 
α 3.133E-01 6.282E+01 
β -7.978E+00 1.385E+01 
C -3.714E-02 3.712E-02 
D -6.255E-03 1.935E-02 
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Evolution of the Test Apparatus 

• Addition of alternator to test apparatus permits “vehicle simulation” 
• AC motor, with speed control, simulates engine crank shaft 
• Battery tester acts as programmable load to simulate vehicle power draw 
• C.E. Niehoff & Co. alternator model N1609-1 

Alternator 
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Added 
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Evolution of the Test Apparatus 

• Addition of engine ignition resistor permits simulation of engine cranking 
• Programmable relay control to ignition load resistor 
• Battery tester acts as programmable load to “tune” ignition power draw 

Engine Ignition 
Simulation  
Equipment 
Added 
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Evolution of the Test Apparatus 
(Battery Monitoring System) 

• Commercial BMS system being tested 
for data fidelity 
 

• EMS Development Corp. model MK2 
BMS 
 

• Provide feedback 
 for SOC, V, et al 

 
• Compare accuracy 
 to Advanced 
 Battery 
 Tester data 

Commercial 
Battery Monitoring 
System Added 
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Evolution of the Test Apparatus 
(Alternator Feedback Control) 

• Initially provide voltage feedback from Advanced Battery Tester controlled signal to provide 
programmable alternator voltage as a function of battery voltage, temperature and SOC 

• Once optimized, look to develop electronics card for alternator feedback 

New Alternator 
Voltage Feedback 
Control Added 
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Scheduled Testing 

• Test articles are currently being capacity 
tested to ensure “matching pairs” are used 
for 2-series connection 
 

• Phase 2 testing will compare alternator fixed 
voltage algorithm to TARDEC-developed 
algorithm 

• Fixed charge-discharge profiles 
• Range of temperatures 

 

• Phase 3 testing will simulate silent watch 
mode profile comparing algorithms 

• Simulated silent watch load profile 
• 10-minute rest 
• 1000 A engine simulation 
• Recharging algorithms 
• Range of temperatures 
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• Currently completing integration of the test apparatus 
 

• System will be able test a number of test profiles to include vehicle driving simulation (engine 
rpm response) and dynamic vehicle electrical loading 
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